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Generalizations of Singular Optimal Control Theory t 
Grnrralizations de la throrie de commande optimale singuli~re 

Verallgemeinerung der Theorie der singul~iren Optimalwertregelung 

O606tUeHI4~ Teoprtrf Heo6bi~iHoro OIITHMa.JIBHOFO yrlpaBJieaI4n 

P. J. M O Y L A N  + and J. B. M O O R E  + 

With appropriate transformations, linear regulator theory can be used to simplify 
substantially the determination of optimal controls for a class of singular problems. 

Summary--This paper considers a new approach to the 
optimization of the linear, possibly time-varying, system 

fc= Fx + Gu lu,l-<l 
with respect to the performance index 

where u i is the ith component  o f  the m-vector u; 
then find u such that  the performance index 

V(u} = ft~ x'Qxdt (3) 
J to 

V = ft, x'Qxdt. 
,]to 

The new approach applies standard regulator theory using 
appropriate transformations and thereby enables the 
problem to be solved more completely than has hitherto 
been possible. For example we consider the cases which 
arise when Q is singular. 

Particular attention is given to the limiting case as tl 
becomes infinite. For this case, conditions are presented 
for the asymptotic stability of the singular optimal trajec- 
tories. 

Some stability results concerning the "bang-bang" 
solutions are also considered. 

1. INTRODUCTION 

A PROBLEM in optimal control  which has been 
discussed for  some years, but  never fully solved, is 
the following: Given the completely controllable 
system 

5c(t) = F(t)x(t) + G(t)u(t) (1) 

with the initial condit ion X(to)=X o and the con- 
straints 

[us] < 1, i = 1 . . . . .  m (2) 
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is minimized. It  is normally assumed§ that 
Q = Q ' > 0 ,  and that F(t), G(t) and Q(t) have 
bounded entries for all t. 

A preliminary study, using the Pontryagin maxi- 
mum principle, shows quite easily that the solution 
may have, in general, three modes:  

(i) A "bang-bang"  mode, where lu,I = 1 for  all i. 
The value of  ui may switch between u t =  + 1 and 
Ui= --1. 

(ii) A "singular" mode, where lu,t < for all i. 
In this case the maximum principle provides very 
little information about  the optimal u. 

(iii) A "partially singular" mode, where lu,I <1 
tor some but not  all i. 

Al thoagh  the solution tbr the "bang-bang"  case 
is an interesting problem in itself, we will be mainly 
concerned here with the singular case. 

Several authors,  notably WONHAM and JOaNSON 
[1] and BASS and WEBBER [2, 3] have considered the 
problem under the following assumptions:  

(a) u is a scalar, i.e. m = 1 ; 
(b) Q, F and G are constant  matrices; 
(c) Q is positive definite, 

and have shown that u*, the optimal value of  u, is 
o f  the form 

U* = k ' x  

on the "singular strip" [k'x[ < 1, kl'x=O, where k 
and kl  are constants. Here, the term "singular  

§The notation A>B(A>IB) will henceforth be used to 
mean that the matrix (A-B) is positive definite (non-negative 
definite). 
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strip" is used to denote that region of the state stxtce 
in which the mode of operation is the "'singular" 
mode. Outside the singular strip, the optimttl 
control is apparently "bang-bang",  although no 
definite results on this point are available. To tile 
authors" knowledge, the theory of Refs. [I--3] 
cannot be extended to tim case where the assump- 
tions (a-c) do not hold. 

More recently, Rou~e~ and SOBaAL [4] have 
developed results which do not require assumptions 
(a) and (b). On the other hand, the work of 
SInISENA [5] does not require assemption (c). How- 
ever, it is not at all clear how the work of [4] or [5] 
can be extended to include the more general case 
when assumptions {a), (b) and (c) are not required. 
Both Refs. [4] and [5] discuss the need to have a 
theory where the above assumptions are not made. 

This paper presents a new approach to the 
singular control problem which is more general 
than those given previously. Using a transforma- 
tion discussed in a companion note [6], the singular 
mode control problem is interpreted as a standard 
linear regulator problem in disguise. The method 
is applicable to multiple input, time-varying systems 
where the matrix Q may be singular. That is, 
assumption (a), (b) and (c) are not required. In 
contrast to some of the earlier treatments the 
method does not require a special co-ordinate basis. 
One specific application is discussed in [7] where a 
standard regulator problem is solved with the 
added constraint that ltiii :'~ I ~'or all i. 

The question of the stability of the optimal 
trajectories is also discussed. This is not a serious 
problem in the earlier treatments [I-4], since it 
turns out that when Q>O. all singular optimal 
trajectories are asymptotically stable. However, 
when Q is allowed to be singular there is a possi- 
bility of unstable solutions. The last section of the 
paper summarises sufficient conditions for asymp- 
totic stability of the optimal solutions. 

2. FINITE TIME RESULTS 

Method of sohltion 
In this section we consider the solution of the 

optimization problem (1-3) when the final time t t 
is finite. We note in passing that the final state 
.v(t,) is unspecified ; an indirect constraint could be 
made on this state by adding a term x'(t,)Ax(t~) to 
the performance index, but as our interest will 
ultimately centre on tile infinite time problem, we 
shall not pursue this line of argument further. 

As a first step in solving the optimization problem 
we consider the minimization of the index (3) 
subject to the system equation (1) I,ut m~t subject to 
lhe inequality constraints (2). Once this problem has 
been solved x~e will discard those solutions which 
violate the constraints on u. 

In order to solve for t['.,e singular solut io~ ot tl:c 
above problem we define new variables u~ and .~ 
through 

.v 1 --- .v -- Gu ~ ( 51 

where tile boundary condition for equation (4) will 
be specified later. Substituting the new variables 
into (1) and (3), we find that 

and 

.~-~ = t'iv 1 + Glul (6) 

V= (x'xQxl + 2X'lSlUl + u~Rxut)dt (7) 
to 

where 

G I = F G - G :  S~ =QG: R;=G'QG. (8) 

We now see that the transformations (4) and (5) 
have converted the singular minimization problem 
into the quadratic regulator problem as solved by 
KALMAN [8], at least for the case when R1 is positive 
definite. For the case when R~=G'QG is not 
positive definite, the index will obviously not have 
the standard form and further transtormations are 
necessary. These cases will be considered later. 

7-he case G' QG > O 
Without turther comment,  wc shall restrict 

attention to the case when RI=G'QG is positive 
definite. Note that when Q is positive definite this 
condition is automatically satisfied if the inputs are 
independent o1" it' there is one input, and even in the 
case when Q is singular there are many possible G 
matrices such that R>0 .  Gixen this condition, it is 
simple to show, as indicated in Appendix 1, that 
(Q-S,RI-~S '1)  is nonnegative definite, and hence 
the results of [8] may be applied directly. For the 
finite time case the optimal control ul* is given by 

, l * = g ~ x ~  (9) 

and the minimum index V* is given as 

V*(x~(to), to)=x;(to)P(to, tOx~(to) (10) 

where K~ is given from 

K'~ = - R ~ ( G ' ~ P  + S'~) (1 l) 

and P ( . ,  t~), where existence is guaranteed, is the 
solution of the Riceati differential equation 

__ [2 = P ( F - G L R  ~ ~Si) + (t:-- G~R~ ~S'~)'I' 

- PG,R~G'~P + ( Q - S , R - t S ' ~ )  : 

P(t~, t~)=0 (12) 
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Before interpreting the above results in terms of 
the desired solution of the finite time singular 
regulator problem, we will perform some manipula- 
tions using the various equations and definitions to 
yield some quite simple relationships between the 
various quantities hitherto defined. In particular, 
we shall establish, in the order listed, the relation- 
ships 

PG=O, K'IG = - I ,  and V*=x'(to)P(to, tl)X(to). 

Postmultiplying both sides of the Riccati equa- 
tion (12) by the matrix G gives that 

- PG = P ( F -  GtR~ XS'~)G + ( F -  G x R~ ~S'a)'PG 

-- PG1R~ aG1PG + (Q - S1R11S'I)G. 

Applying the definitions (8) (namely, R~=S'~G, 
$1 = QG and G1 = F G -  G) gives immediately that 

-d t (PG ) = ( F' - S~ R ? XG'~ --PG~R? ~G'l)PG . 

We are now in a position to derive the equation 
of the singular strip; for when u~ =ua*, we have 
from equation (5) that 

K'lx = K i x  I + K'IGul* = K'lx 1 + K'IGK'lxl 

and using the result that K'~G= - I ,  this reduces to 

K i x  =0.  (17) 

Essentially, equation (17) is the condition under 
which the transformation (4), (5) remains valid; 
or, as we shall see, a sufficient condition for the 
optimal control u* to be a "singular" control. 
Experience indicates that (17) is also a necessary 
condition for a singular optimal control, but so far 
this remains unproven in the general case. 

Still considering the case when the control ul is 
optimal, that is when ua=u~*=K'lx~, we denote 
the control u corresponding to this as u* without 
claiming lor the moment that u* is optimal. We 
have from (4) and (9) that 

Now since P(t z, tOG(tl)=O, the above differential 
equation in (PG) has the solution u* = ill* = ( Ki xl) = g l x l  + Ki  Sq • 

PG--O. (13) 

This is the first of the simple relationships. 
Postmultiplying both sides of equation (I 1) by 

the matrix G gives that 

K '~ G = - R [ I ( G '~ P G + S'I G ) . 

Applying the result PG=O and the definitions (8), 
in particular RI=S'~G, yields the second simple 
result 

K'~G = - I ,  together with /(~G+K~(~= 0. (14) 

For the case when the control ul is in fact the 
optimal control ul* then equation (5) becomes 

From the original system equation and the con- 
straint equation (15), there follows 

u* = Iii't(x - Gul*)+ K' I[F(x-  Gul*) 

+ ( F G -  (~)u 1" ] 
" l  t " t  t " , = K l x + K I  x - ( K x G + K 1 G ) u l  

=(K'~F + I('~)x 

where the final equality follows by use of (14). For 
convenience, we make the definition 

K= F'K 1 +lil 1 

so that 

u*=K'x .  (18) 

xl = x - G u l *  (15) 

and the minimum index V* given from equations 
(2)-(10) may be written as 

l,'*(xj (to), to) = [X(to) -- G(to)ul*(to)]'P(to, tl)[x(to) 

- G(to)Ut*(to)]. 

Since PG=O from (13) this becomes a function of 
only X(to) and to as follows 

lZ*(X(to), to)=X'(to)P(to, tOX(to). (16) 

Optimafity of the sohttions 
The proof that the control u*= K'x  is optimal is 

immediate, since a simple manipulation of equation 
(12) yields that 

f 
t l  

to 

x'(t)Q(t)x(t)dt = x'(to)P(t o, q)x(to) 

+ ft, {K't (t)x(t)}'R 1 {K' 1 (t)x(t)}dt 
, . ) to  

By assumption, K'l(to)X(to)=O. Thus, since R~ 
is positive definite, any singular optimal trajectory 
x*(t) must satisfy K'l(t)x*(t)=0 for all t such that 
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lo _< t < t~ --provided, of course, that this is possible. 
It is clear that u* as defined above is the unique 
control such that this condition is satisfied, there- 
fore u* is the optimal control. 

Of  course, by simply rejecting those solutions of 
the singular minimization problem above which 
violate the constraints (2) at any time t >_ to, solutions 
that remain are the solutions to the singular optimal 
regulator problem posed at the beginning of this 
section where we included the control magnitude 
constraint. That  is, for the input to operate in the 
singular mode rather than the bang-bang mode the 
constraints 

[(K'x)i]<l and (K~x)i=O (19) 

must hold for all i and all to.<_t<<_ q. Given these 
conditions, the optimal control is given by equation 
(18). 

When the conditions (19) do not hold, the optimal 
control is in general bang-bang, and in fact 
u* =sgn(K]x)  in some vicinity of  the singular strip 
---see [3] for a detailed examination of this case. 

suppose for the moment that Rj is nonsingutar. + 
One then has a series of parameters defined by 

G~ = FG~_ t - da,_ 1 -1 
I 

S~ = QG~_ 1 ~ 
5 

R,=GI_~'QGi_I j 

i=1  . . . . . .  i 

where Go is identitied with (;. At thej th  step, then, 
the system becomes 

.;cj = k~ i + G juj 

with performance index 

I 
1 I 

V = (xj'Qxj + 2x jS ju j  + uj'Rjuj)dt.  
,,)to 

In the same way as before, we obtain 

where 

u j* .= K j '  x i ; l /*  = x.i'Px.i 

K 2 = - (PGj + S j) R j -  t 

Further singular solutions: G' QG = 0 

We now consider the case where R~ = G'QG may 
be singular. We shall show in this case that the 
optimal control on the singular strip is still given 
by a linear feedback law, but that the dimensionality 
of the singular strip is reduced. 

Consider first the case where R L is identically 
zero. Clearly, since Q > 0 ,  S 1 is also zero, so that 
the transformed problem (6), (7) is once more 
singular. In this case we may use a new trans- 
formation 

/12~-Ul 

X 2 = X  1 - - G l U  2 

where u~, .vl and Gj are defined as before. Then 

and 

where 

"~:2 = FX2 + G2u2 

f 
t t  

V =  (x 'zQxz + 2x'2S2u2 + u'2R2u2)dt 
tO 

G 2 = F G , - ( ~ I  ; S2=QGa ; Rz=G'IQG1. 

If Rz is nonsingular, the optimal control may be 
derived as before. If not, further transformations 
may be used. 

Suppose in general that j transformations are 
necessary before a non-zero R a. is found, and 

and P ( . ,  tt) is the solution of 

t - 1  t t - P = P ( F - G i R  ~ - ~ S j ) + ( F - G j R  i S i )  P 

- PGj Rj-  1 G j ' P -  Sj R i- ~ Sj'  + Q;  

P(tl, t~)=0.  (20) 

The reverse transformation, from ltj* t o  U*, 

proceeds in much the same way as before--detailed 
calculations and proofs are given in Appendix 2. 
The final result is that 

u* = K' . \  (21) 

where K is computed recursively from the relation- 
ship 

l~i- 1 = F ' K i + l ~ i  

in which K o is to be identified with K. Also 

V*(x(t), t )=x'( t )P(t ,  h).v(t) (22) 

and the singular strip lies on the intersection of the 
hyperplanes 

Ki'.v = 0, i=  1 . . . . .  j .  (23) 

Clearly, the transformations are only valid if we 
restrict the singular strip to that subset of  (23) for 
which [K'x I < 1 for all t o_< t 2-2 tt. It seems plausible, 

i It is possible that  no singular  solut ions exist, in which 
case a non-zero Rj will never be found in the range j < n  
( n = o r d e r  of  the system). 
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although no proof is available, that this inequality 
defines the largest subset of (23) for which every 
component of the optimal control is singular. 

Singular solutions when Rj is singular 
For completeness we now mention the case--not 

encountered in single input systems--for which the 
above transformations yield a singular but non-zero 
Rj. Without loss of generality, we may assume Rj 
to be of the form 

a :1 
Then, with appropriate partitioning of the various 
coefficient matrices, we find that 

and 

Ycj = Fxj + Gou~ + Gbub 

f 
tl 

V = (xfQxj + 2x/Sau a + ua'R~ua)dt 
to 

where we define 

(24) 

(25) 

[u°] 
U ~- -  o 

Ub 

It may be seen that the performance index is 
singular in the Ub components, but not in the ua 
components of the control vector. With this in 
mind, the transformation used earlier is now 
applied to u b only--that  is, we set 

/~b+ 1 ~Ub 

Xj  + 1 = X j - -  GbU b + 1. 

Making the appropriate substitutions in (24) and 
(25), it is found that 

and 

where 

Ycj+ t =Fxj+ 1 + G j+  lUj+ I 

I 
tt 

V= (xy+l'Qxj+t+2Xj+l'Sj+tul+t 
,)to 

+ u j+ 1'R j+ tuj+ 1)dt 

and the other matrices are readily calculated. The 
subsequent calculations are tedious, but it should be 
clear that, if Rj+I is nonsingular, Uj+l may be 
found via a Riccati equation, and thence uj is 
readily found. From this point, the results precisely 

parallel those given in equations (20-23). There 
is, however, one extra equation to be added to (23), 
namely 

Kb+ l~X=O 

where Kb+ t is the gain matrix associated with Ub+ 1" 
This is obviously the condition for the "b"  com- 
ponents ot the input to be in their singular mode. 

The only remaining possibility is that R j+ t is also 
singular, in which case the procedure is to apply a 
further transformation. 

3. INFINITE TIME RESULTS 

The preceding results may all be extended to the 
limiting case, as the final time t~ approaches infinity, 
provided only that the limit 

P(t)= lim P(t, tl) 
t t--* oo 

can be shown to exist. Since it is known, from 
elementary Riccati equation theory, that 

x'(t)P(t, tl)X(t ) 

increases monotonically as t t increases, because 
Q-SjR]-tSj>O, it is sufficient to prove that 
x'(t)P(t, t)x(t) has an upper bound for an arbitrary 
x(t) which is independent of q.  This may be 
shown as follows. 

Assume that the pair [F, G] is completely con- 
trollable. Then for a given but arbitrary x(t), it is 
straightforward to exhibit a control such that 

~ t t  
V{u} x'Qx dt 

t 

is bounded above, independently of t t. But it was 
shown earlier that, for R~ >0. 

tl 
x'Qxdt =x'(t)P(t, tl)X(t) + (K'lx)'Rt(K'tx)dt 

t , I t  

and a similar result holds when RI is singular. The 
required upper bound therefore exists, so that P(t) 
always exists when [F, G] is completely controllable. 

Stability results 
An important motivation for constructing opti- 

mal systems is that such systems tend to have 
desirable engineering properties such as a high 
degree of stability, tolerance ot nonlinearities 
without appreciable loss of performance, and a low 
sensitivity to plant parameter variations. In par- 
ticular, the optimal performance index may often 
be shown to be a Lyapunov function. References 
[9] and [10] show that these properties are, in fact, 
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present in singular optimal systems of the type 
considered here. -I-he lnain results ;ire as ILllows: 

1. Assume that tl~c pair [I+GA".  D] is unfl- 
tormly completely controllable for borne !) such 
that DD'=Q.  Then the optimal performance 
index is a Lyapunov function for all singular 
trajectories, which are therefore stable trajectories. 

2. All optimal "bang-bang" trajectories suffi- 
ciently near the singular strip ultimately reach the 
singular strip, so that the above assumption 
guarantees local asymptotic stability near .v=0. 

3. With the additional assumption that the free 
system 2 = F x  is exponentially asymptotically 
stable, the optimal system is globally asymptotically 
stable. 

4. The above stability results continue to hold if 
unintentional nonlinearities, of a fairly general 
type, are introduced at the plant input. 

It is also possible to extend the results of [ll] in 
a straightforward way to ensure that the optimal 
singular trajectory x* decays at least as fast as 
e -~t, where ~ is any specified positive number. 
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[11] B. D. ANt)ERSON and J. B. MOORE: Linear system 
optimization with prescribed degree of stability. Uni- 
versity o f  Newcastle, Technical Report No. EE-6901 
(Jan. 1969). 

[12] B. D. O. ANDERSON and J. B. MOORE: Linear Optimal 
Control. Prentice-Hall, Englewood Cliffs, N.J. (1971). 

APPENDIX I 

Proof that Q-S1R-(1S'I  >0 

Using the known expression for St, we have that 

4. CONCLUSIONS 

Singular solutions are found to exist on hyper- 
planes of dimension lower than the order of the 
system for any nonnegative definite Q. In all cases 
the present procedure gives the equations of the 
singular hyperplanes, and the optimal singular 
control in the torm of a linear feedback law. For 
time-invariant single-input systems and special 
choices of the matrix Q, these results reduce to the 
results of [1-5]. 

A minor computational difficulty arises in 
attempting to solve the infinite time problem, since 
the associated steady state Riccati equation may 
have more than one nonnegative definite solution. 
Thus, although any of the standard solution 
methods [12] may still be used, there is no guarantee 
that the solution found will in fact correspond to 
the linfiting solution of the finite-time problem. 
In practice, the authors have found that it is 
preferable to solve for the finite-time solutions 
first, and to obtain the steady state solution by a 
limiting method. 

Q -  S tR~ 1S' 1 = Q -  QGR? aG'Q. 

Since Q is symmetric and nonnegative definite, we 
can find an H such that Q = H'H. Then 

Q -  S1R- ( IS '  1 = H ' H -  H'HGR t 1G'H'H 

= H'[I- HGR-(~G'H']H. 

Now choose a matrix V such that 

HG = I/R} 

Since RI is nonsingular, such a choice may always 
be made (and is unique). We have then that 

a'n'UO=R V'VR+I 
or  

R,=R ,V'VRt 

which implies that 

V ' V = I .  
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Substituting for HG in the above expression, 

Q -  s , a ?  = H ' U  - VV']n. 

Now since 

V'V==I 

VV 'VV '  = VV'  

that is, 

( VV')Z = VV' 
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and hence 22=2 where ,~ is any eigenvalue of VV'. 
Obviously, then, all eigenvalues of  VV' are 0 or 1, 
and hence all eigenvalues of  ( I -  VV') are 1 or 0. 
Since ( I - V V ' )  is a symmetric matrix, it follows 
that 

(1-  VV')>O 

and therefore 

Q-StR[1S'I = H ' [ I -  VV']H>O 

as required. 
Note. The proof  is equaUy valid, with obvious 

modifications, for the case where j transformations 
are necessary to yield a non-zero R j, the result then 
being 

We are now in a position to compute u* from 
uj*. Recalling that Us_ ~* =fii*, we obtain 

u j_  1 * = K ) x j  + K ) i j  

which readily reduces to 

U j_ 1" = K ) _  lXj_ 1 

by use of the above equations and the transforma- 
tion xs=xj_,-Gj_~uj .  Successive use of this 
procedure gives ui*=K'~x i for all i<j, and in 
particular 

u * = K ' x .  ( 2 1 )  

The optimal performance index 

Q__ --1 ! SjRj Sj~O. V* = xj'Pxj 

= ( x  j_ ,  -- G j_ ,uj)'P(x j_ I -- a j -  lU]) 

APPENDIX 2 

Derivation of  equations (21-23) 

Our starting point is the Riccati equation 

- P = P ( F -  GjRf 1S)) + (F - G j R f  1S))'P 

- P G j R f ' G ) P -  S jRf  'S) 

+ Q ;  P(tx, t l ) = 0  

and the definition 

K l = -- (PGj + Sj)R-f 1.  

(20) 

or, since PGj-1 =0, 

V* =X)_ IPxj_ 1 

and by (56) this reduction can be continued, so that 
finally 

V* =x'Px. (22) 

From the basic transformation x~ = xi_ ,  - Gt-  ~u,, 
we can prove as before that K~x~_ 1...0 for all i in 
the range 1 < i<j. From this identity and equation 
(58), it follows by induction that 

In the same manner as before, it is immediate that Ki'x-- O, i = 1, . . .  , j .  (23) 

PGj-1 =0, and K ) G j _ I = - I .  (55) This completes the derivation. 

Now, noting that QGi=O for all i<j, equations 
(20) and (55) yield, by induction, 

PGi=O for all i<j .  (56) 

It follows immediately from (55) and (56) that 

K'IG ~=-0 for all i < j - 1 .  

I f  we define a set of  vectors K1 by 

Ki-  1 ~I~i + F'Ki (57) 

(i.e. the K~ are computed backwards from Ks), then 
simple induction using (56) and (57) gives the 
indentities 

K~O~_,=-/ L 
, Ior and K~Gi-k=O, k > l ?  J all i<_j. (58) 

R6sm-n6--Le pr6sent article consid~re uric nouvelle approche 
~t l'optimalisation du syst~me lin6aire, eventuellement 
variable dans le temps, 

x=Fx+Gu ]u~[~< 1 

par rapport gt l'indice de performance 

V = r i t' x'Qxdt. 
,]to 

La nouvelle approche applique la th6ode des r6gulateurs 
habituelle, en utilisant des transformations appropri~s, 
et permet ainsi une solution plus complete du probl~me que 
n'a ~t6 possible jusqu'ici. Par exemple, rarticle consid~re 
les cas qui ont lieu lorsque Q est singulier. 

une attention particuli~re est reserv~e au cas-limite 
lorsque t~ devient infini. Pour ce cas, rarticle pr~sente des 
conditions pour la stabilit6 asymptotique des trajectoires 
optimales singuli6res. 

L'article consid~re 6galement certains r6sultats se rap- 
portant aux solutions par plus, moins ou z~ro. 
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Zusammenfassung--Betrachtet wird ein neucr Zugang zur 
Optimierung des linearen, m6glichcrweise zeitvariablen 
Systems 

x = F x  +~u lu,l<~ 

hinsichtlich des Index der Arbeitsweise 

V = t l ' x ' O x d t .  
,.)to 

Der neue Zugang verwendet die tibliche Reglertheorie 
unter Benutzung geeigneter Transformationen und erlaubt 
deshalb eine vollst~mdigere L6sung des Problems, als es 
bisher m0glich war. Als Beispiel werden die sich ergebenden 
Ffille betrachtet, wenn Q singular ist. 

Spezielle Aufmerksamkeit wird dem Grenzfall geschenkt, 
wenn tl unendlich wird. Ftir diesen Fall werden Bedingunge 
ftir die asymptotische Stabilit~.t der singuliiren optimalen 
Trajektorien angegeben. 

Einige Stabilit~tsergebnisse, die "bang-bang" L6sungen 
hetreffend, werden betrachtet. 

P e 3 t o M e - - H a c r o a t t t a a  CTal~b~l pacCMaTpttBaeF }IOBbIH HO~[- 
XO,rI K OI1THMH3aI~HH JlllHel41tO{i, BOBMO)KIIO rlepeMelliloii  
Hi3 B|3eMeH~4. CHCleMbl 

x = F x + G .  [.il<~ 1 

Iio OTHOIHeHHRa K [toKa3aTe~lO p a s o  [b! 

[' = x ' Q x d t  . 

aOBbll~ no j1xo~  np~tMen~¢T Ofb iq r ty ro  Teopn~o pery.qaTO- 
p o a ,  HcnoJll,3y~l r~o~xo2IgtttI4e r lpeapa t t l en~ln ,  H no3BoJl~eT 
TaKHM o 6 p a 3 0 M  6 o n e e  rlOJIHOe p e m e u a e  n p o 6 n e M b l  tleM 
3TO 6blJIO BO3MO)KHO }IO CHX Hop .  H a n p n M e p ,  CTaTb~[ 
paccMa-rpHBaeT cJ lyqaH KoTopble 14MelOT Mec'ro Kor~Ia 
Q CTaHOBHTC~I HeO6bIqHblM. 

Oco6oe BHI4MaHIte y~eneuo npe~eJ16rioMy cJ~yqa~o 
K o r e a  t l  CTaHOBItTC~ ~CI~OHeqHblM. }~YDI 9TOFO c.qyqa~,  
CTaTb~t r i p e ~ a a r a e T  yc.rIOBItR aCI4MnTOTIIqeCKO~I yCTOI~qtIB- 
OCTH ~JI~l HeO6blqHblX OnTI4Ma.rlhHblX TpaeKTOptt~l. 

CTaTbl;l TaK~<e paccMaTpHBaeT He~oTopb~e pe3y-qbTaTbl 
OTHOeIII.IAHeCI~I K TpexIIo3141.IHOHHblM petuem4aM THna ' 'nJt~oc, 
MHHyC, HOJIb". 


