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Generalizations of Singular Optimal Control Theory t

Généralizations de la théorie de commande optimale singuliére

Verallgemeinerung der Theorie der singuldren Optimalwertregelung
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P.J. MOYLAN} and J. B. MOORE!

With appropriate transformations, linear regulator theory can be used to simplify
substantially the determination of optimal controls for a class of singular problem:s.

Summary—This paper considers a new approach to the
optimization of the linear, possibly time-varying, system

¥=Fx+Gu |u]<1

with respect to the performance index

ty
V=J x'Qxdr.

to

The new approach applies standard regulator theory using
appropriate transformations and thereby enables the
problem to be solved more completely than has hitherto
been possible. For example we consider the cases which
arise when Q is singular.

Particular attention is given to the limiting case as ¢,
becomes infinite. For this case, conditions are presented
for the asymptotic stability of the singular optimal trajec-
tories.

Some stability results concerning the ‘bang-bang”
solutions are also considered.

1. INTRODUCTION

A PROBLEM in optimal control which has been
discussed for some years, but never fully solved, is
the following: Given the completely controllable
system

X(@)=F(®)x() -+ G(Ou(t) 4]
with the initial condition x(t,)=x, and the con-
straints

|u,|sl, i=l,...,m

2
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where u; is the ith component of the m-vector u;
then find « such that the performance index

V{u} =Jn x'Qxdt 3

¢

is minimized. It is normally assumed§ that
Q=0'>0, and that F(¢), G(t) and Q(f) have
bounded entries for all ¢.

A preliminary study, using the Pontryagin maxi-
mum principle, shows quite easily that the solution
may have, in general, three modes:

(i) A “bang-bang” mode, where |u;|=1 for all i.
The value of u; may switch between ;== +1 and
u;=—1.

(i) A “singular” mode, where |u;|<1 for all i.
In this case the maximum principle provides very
little information about the optimal u.

(iii) A “partially singular” mode, where |u;| <1
for some but not all J.

Althoigh the solution for the “bang-bang’ case
is an interesting problem in itself, we will be mainly
concerned here with the singular case.

Several authors, notably WONHAM and JOHNSON
[1] and Bass and WEBBER [2, 3] have considered the
problem under the following assumptions:

(a) u is a scalar, i.e. m=1;

(b) O, F and G are constant matrices;

(¢) Q is positive definite,
and have shown that u*, the optimal value of w, is
of the form

u*=k'x

on the “‘singular strip” k’xls 1, k;’x=0, where k
and k, are constants. Here, the term ‘‘singular

§ The notation A>>B(A= B) will henceforth be used to
mean that the matrix (4-B) is positive definite (non-negative
definite).
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strip™ is used to denote that region of the state space
in which the mede of operation is the “singular™
mode. Outside the singular strip, the optimal
control is apparently “bang-bang”, although no
definite results on this point are available. To the
authors” knowledge, the theory of Refs. [1-3]
cannot be extended to the case where the assump-
tions (a~c) do not hold.

More recently, ROHRER and SOBRAL {4] have
developed results which do not require assumptions
(a) and (b). On the other hand, the work of
SIRISENA [5] does not require assemption (¢). How-
ever, it is not at all clear how the work of [4] or [5]
can be extended to include the more general case
when assumptions (2}, (b) and (c¢) are not required.
Both Refs. [4] and [5] discuss the need to have a
theory where the above assumptions are not made.

This paper presents a new approach to the
singular control problem which is more general
than those given previously, Using a transforma-
tion discussed in 4 companion note [6], the singular
mode control problem is interpreted as a standard
linear regulator problem in disguise. The method
is applicable to multiple input, time-varying systems
where the matrix @ may be singular. That is,
assumption (a), (b) and (c) are not required. In
contrast to some of the earlier treatments the
method does not require a special co-ordinate basis.
One specific application is discussed in {7] where a
standard regulator problem is solved with the
added constraint that |i,| <1 for all i.

The question of the stability of the optimal
trajectories is also discussed. This is not a serious
problem in the earlier treatments [1-4], since it
turns out that when (>0. all singular optimal
trajectories are asymptotically stable. However,
when Q is allowed to be singular there is a possi-
bility of unstable solutions. The last section of the
paper summarises sufficient conditions for asymp-
totic stability of the optimal solutions,

2. FINITE TIME RESULTS

Method of solution

In this section we consider the solution of the
optimization problem (1-3) when the final time ¢,
is finite. We note in passing that the final state
x(z,) is unspecified; an indirect constraint could be
made on this state by adding a term x'(#{) Ax(#,) to
the performance index, but as our interest will
ultimately centre on the infinite time problem. we
shall not pursue this line of argument further.

As a first step in solving the optimization problem
we consider the minimization of the index (3)
subject to the system equation (1) hut not subject to
the inequality constraints (2). Once this problem has
been solved we will discard those solutions which
violate the constraints on u.

In order to solve for the singular solutions ot the
above problem we define new variables u, and v,
through

iy =i (1

Ny =x -Gy

i

where the boundary condition for equation (4) will
be specified later. Substituting the new variables
mto (1) and (3), we find that

XNy=Fy + 0, (0)
and
8]
V-:J (x70x, +2x1Su +ujRu)dt @)
to
where
G,=FG—-G; S, =0G: R,=G'Q0G. (8)

We now see that the transformations (4) and (5)
have converted the singular minimization probiem
into the quadratic regulator problem as solved by
KALMAN [8], at least for the case when R, is positive
definite. For the case when R,=G'QG is not
positive definite, the index will obviously not have
the standard form and further transtormations are
necessary. These cases will be considered later.

The case G'QG>0

Without turther comment, wc shall restrict
attention to the case when R;=G"QG is positive
definite. Note that when @ is positive definite this
condition is automatically satisfied if the inputs are
independent or if there is one input, and even in the
case when @ is singular there are many possible ¢
matrices such that R>0. Given this condition, it is
simple to show, as indicated in Appendix I, that
(Q—S,R,™'S}) is nonnegative definite, and hence
the results of [8] may be applied directly. For the
finite time case the optimal control u,¥* is given by

=Ky 9)
and the minimum index V'* is given as
V*(x4(to), 10)=X1(1)P(to, t;)X1(to) (10)
where K, is given from
Ki=-R7NG\P+S)) (1)

and P(-, {,), where existence 1s guaranteed, is the
solution of the Riccati differential equation

—~P=P(F~GR;'SY+(F~G R 'SP
~PGR{'GIP+(Q -S,R7'S})
P(llﬁt]):() (12)
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Before interpreting the above results in terms of
the desired solution of the finite time singular
regulator problem, we will perform some manipula-
tions using the various equations and definitions to
yield some quite simple relationships between the
various quantities hitherto defined. In particular,
we shall establish, in the order listed, the relation-
ships

PG=0, K;G=—1I, and V*=x'(t,)P(to, t,)x(t,).

Postmultiplying both sides of the Riccati equa-
tion (12) by the matrix G gives that

—~PG=P(F—-G,R{'S))G+(F~G,R{'S}) PG
—PGR{'G,PG+(Q—-S,R{!5))G.

Applying the definitions (8) (namely, R,=S1G,
S, = QG and G, = FG—G) gives immediately that

—cht(PG)=(F/—S1RflG;-—PGlR{‘Gi)PG.

Now since P(¢,, ¢,)G(¢,)=0, the above differential
equation in ( PG) has the solution

PG=0. (13)
This is the first of the simple relationships.

Postmultiplying both sides of equation (11) by
the matrix G gives that

KiG=~R{ Y G{PG+S.G).
Applying the result PG=0 and the definitions (8),
in particular R, =S}G, yields the second simple
result

K|G= —1I, together with K{G+K{G=0, (14

For the case when the control u, is in fact the
optimal control u,* then equation (5) becomes

X, =x—Gu* 15)

and the minimum index V'* given from equations
(2)-(10) may be written as

F*(xy(tg), to)=[x(to)— G(to)uy*(2o)]' P (to, 1)) x(to)
—G(to)u *(80)].

Since PG =0 from (13) this becomes a function of
only x(z,) and ¢, as follows

V¥(x(to), 1o)=x'(1o) P(1g, 1)x(to). (16)

We are now in a position to derive the equation
of the singular strip; for when u, =u,*, we have
from equation (5) that

Kix=Kix,+KiGu*=Kix, + K{GKx,
and using the result that K{G= —1I, this reduces to
1x=0. amn

Essentially, equation (17) is the condition under
which the transformation (4), (5) remains valid;
or, as we shall see, a sufficient condition for the
optimal control «* to be a “singular” control.
Experience indicates that (17) is also a necessary
condition for a singular optimal control, but so far
this remains unproven in the general case.

Still considering the case when the control u, is
optimal, that is when u, =u,*=Kix,, we denote
the control u corresponding to this as u* without
claiming for the moment that u* is optimal. We
have from (4) and (9) that

u*=1,*=(Kix)=Kjx; + K%, .

From the original system equation and the con-
straint equation (15), there follows
u*=Ki(x— Gu,*)+ K [F(x— Gu*)
+(FG~G)u,*]
=Kix+K{ x—(KiG+K;Gu,*
=(K{F+K})x
where the final equality follows by use of (14). For
convenience, we make the definition
K=FK;+K,
so that
u*=K'x. (18)
Optimality of the solutions
The proof that the control u* = K’x is optimal is

immediate, since a simple manipulation of equation
{12) yields that

le X' (DQ(Ox(1)dt=x'(to)P(to, £)x(to)

to

+th {Ki(x()}' R {K'(D)x(1)}dt

By assumption, Ki(z)x(fo)=0. Thus, since R,
is positive definite, any singular optimal trajectory
x*(t) must satisfy K7 ($)x*(¢)=0 for all ¢ such that
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1y <t <t;——provided, of course, that this is possible.
It is clear that «* as defined above is the unique
control such that this condition is satisfied, there-
fore u* is the optimal control.

Of course, by simply rejecting those solutions of

the singular minimization problem above which
violate the constraints (2) at any time ¢ > 1, solutions
that remain are the solutions to the singular optimal
regulator problem posed at the beginning of this
section where we included the control magnitude
constraint. That is, for the input to operate in the
singular mode rather than the bang-bang mode the
constraints

|(K'x)]<1 and (K{x);=0 (19)

must hold for all i and all r,<t<¢,. Given these
conditions, the optimal control is given by equation
(18).

When the conditions (19) do not hold, the optimal
control is in general bang-bang, and in fact
u*=gsgn(Kjx) in some vicinity of the singular strip
-—see {3] for a detailed examination of this case.

Further singular solutions: G'QG=0

We now consider the case where R, =G’ QG may
be singular. We shall show in this case that the
optimal control on the singular strip is still given
by a linear feedback law, but that the dimensionality
of the singular strip is reduced.

Consider first the case where R, is identically
zero. Clearly, since 9=0, S, is also zero, so that
the transformed problem (6), (7) is once more
singular. In this case we may use a new trans-
formation

Hy=u,
X, =x,;—Gu,
where u;, x, and G, are defined as before. Then

,\"2=E\‘2+Gzllz

and
14 =ﬁl (x50x,+2x5Su, + usR,u,)dt
where
G,=FG—G{; $,=0G;; R,=G,0G,.

If R, is nonsingular, the optimal control may be
derived as before. If not, further transformations
may be used.

Suppose in general that j transtormations are
necessary before a non-zero R; is found, and

suppose for the moment that R; is nonsingular.”
One then has a series of parameters defined by

GizFGi~1‘Gi-1
Si=QGi—1

)
’} i=1,...,j
Rg:Gi~1’QGi—l J

where G, is identified with ;. At the jth step, then,
the system becomes

with performance index
1)
to

In the same way as before, we obtain

=K, x;:

S ‘.’ 2 .
J ji ) "\.r}x.l

where
and P(-, t,) is the solution of

~P=P(F~G;R,"'S))+(F-G,;R;”'S/yP
P(1y, 1)=0. (20)

The reverse transtormation, from u* to u*,
proceeds in much the same way as before—detailed
calculations and proofs are given in Appendix 2.
The final result is that

w*¥=K’'x (21

where K is computed recursively from the relation-
ship
K., =FK+K;

in which K| is to be identified with K. Also
VE*(x(r), )= x"(2)P(t, t)x(1) (22)

and the singular strip lies on the intersection of the
hyperplanes

K/x=0, i=1....,j. (23)

Clearly, the transformations are only valid if we
restrict the singular strip to that subset of (23) for
which |K’x| <1 forall to<7=¢,. It seems plausible,

t It is possible that no singular solutions exist, in which
case a non-zero R; will never be found in the range j<n
(n=order of the system).
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although no proof is available, that this inequality
defines the largest subset of (23) for which every
component of the optimal control is singular.

Singular solutions when R; is singular

For completeness we now mention the case—not
encountered in single input systems—for which the
above transformations yield a singular but non-zero
R;. Without loss of generality, we may assume R;

to be of the form
R, O

Then, with appropriate partitioning of the various
coefficient matrices, we find that

X;=Fx;+Gu,+Gyu, (24)

and

1
|4 =J‘ (x/0Qx;+2x;'Su,+u,/Ru)dt  (25)
to

where we define

u=[;:].

It may be seen that the performance index is
singular in the u, components, but not in the u,
components of the control vector. With this in
mind, the transformation used earlier is now
applied to u, only—that is, we set

Upt1=Up

Xj41=X;—Gpllpsy.

Making the appropriate substitutions in (24) and
(295), it is found that

Xje1=Fxpp 1+ Gy gty

and
31
V=J‘ (41 0%j01+2X541'Sjaqtjeg
to

+uje1'Ryp 14 1)dt

ua
Ujp1=
! [“b+1]

and the other matrices are readily calculated. The
subsequent calculations are tedious, but it should be
clear that, if R;., is nonsingular, u;,,; may be
found via a Riccati equation, and thence u; is
readily found. From this point, the results precisely

where

parallel those given in equations {(20-23). There
is, however, one extra equation to be added to (23),
namely

Kp4y'x=0

where K, ;. , is the gain matrix associated with u,, ;.
This is obviously the condition for the “b” com-
ponents of the input to be in their singular mode.

The only remaining possibility is that R, , is also
singular, in which case the procedure is to apply a
further transformation.

3. INFINITE TIME RESULTS

The preceding resuits may all be extended to the
limiting case, as the final time ¢, approaches infinity,
provided only that the limit

P(f)= lim P(t, t,)

ty— o0

can be shown to exist. Since it is known, from
elementary Riccati equation theory, that

X'(OP(t, 1)x(t)

increases monotonically as f; increases, because
Q-S;R7'S;>0, it is sufficient to prove that
x'(£)P(t, )x(t) has an upper bound for an arbitrary
x(#) which is independent of #;,. This may be
shown as follows.

Assume that the pair [F, G] is completely con-
trollable. Then for a given but arbitrary x(¢), it is
straightforward to exhibit a control such that

V{u}=Jnx'Qx de

is bounded above, independently of t,. But it was
shown earlier that, for R; >0.

J " Qxdt=x'()P(t, t)x(0) +j“ (K'Y Ry(Kx)dt

and a similar result holds when R, is singular. The
required upper bound therefore exists, so that P(¢)
always exists when [F, G] is completely controllable.

Stability results

An important motivation for constructing opti-
mal systems is that such systems tend to have
desirable engineering properties such as a high
degree of stability, tolerance of nonlinearities
without appreciable loss of performance, and a low
sensitivity to plant parameter variations. In par-
ticular, the optimal performance index may often
be shown to be a Lyapunov function. References
[9] and [10] show that these properties are, in fact,
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present in singular optimal systems of the type
considered here. The main results dre as follows:

1. Assume that the pair [F+GAY, D] is unif-
formly completely controllable for some /) such
that DD’ =(. Then the optimal performance
index is a Lyapunov function for all singular
trajectories, which are therefore stable trajectories.

2. All optimal “bang-bang” trajectories suffi-
ciently near the singular strip ultimately reach the
singular strip, so that the above assumption
guarantees local asymptotic stability near x=0.

3. With the additional assumption that the free
system X=Fx is exponentially asymptotically
stable, the optimal system is giobally asymptotically
stable.

4. The above stability results continue to hold if
unintentional nonlinearities, of a fairly general
type, are introduced at the plant input.

1t is also possible to extend the results of [11] in
a straightforward way to ensure that the optimal
singular trajectory x* decays at least as fast as
e~ *, where « is any specified positive number.

4. CONCLUSIONS

Singular solutions are found to exist on hyper-
planes of dimension lower than the order of the
system for any nonnegative definite Q. In all cases
the present procedure gives the equations of the
singular hyperplanes, and the optimal singular
control in the form of a linear feedback law. For
time-invariant single-input systems and special
choices of the matrix Q, these results reduce to the
results of [1-5].

A minor computational difficulty arises in
attempting to solve the infinite time problem, since
the associated steady state Riccati equation may
have more than one nonnegative definite solution.
Thus, although any of the standard solution
methods [12] may still be used, there is no guarantee
that the solution found will in fact correspond to
the limiting solution of the finite-time problem.
In practice, the authors have found that it is
preferable to solve for the finite-time solutions
first, and to obtain the steady state solution by a
limiting method.
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APPENDIX 1
Proof that Q—S,R;'S;>0

Using the known expression for .S, we have that
0-S,R;'S1=0—0QGR'G'Q.

Since @ is symmetric and nonnegative definite, we
can find an H such that Q=H'H. Then

Q—-S,R{'S,=H'H-H'HGR;'G’'H'H
=H'[I-HGR;'G'H']H.

Now choose a matrix V such that
HG=VR?

Since R, is nonsingular, such a choice may always
be made (and is unique). We have then that

G'H'HG=R}V'VR}
or
R,=RY¥V'VR}

which implies that
Vv=I.
Substituting for HG in the above expression,

0—S{R{'S\=H[I-VV]H.

Now since
V'Vse=1I
vvvy' =vvy'
that is,
FV=Vy’
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and hence 4%=1 where Z is any eigenvalue of V'V’,
Obviously, then, all eigenvalues of }V'J7" are 0 or |,
and hence all eigenvalues of (/—VV’) are 1 or (.
Since (/—1VV’) is a symmetric matrix, it follows
that

(I-VVH)=0
and therefore
Q—S\R{!'S\=H[I-VV']H=20

as required.

Note. The proof is equally valid, with obvious
modifications, for the case where j transformations
are necessary to yield a non-zero R;, the result then
being

0—-S,R;1S;>0.

APPENDIX 2
Derivation of equations (21-23)

Our starting point is the Riccati equation

—P=P(F—G,R;'S)+(F—G,R;'S)'P

J J
—PG;R7'G;P—S;R;'S;
+Q; P(ty, t)=0 (20)

and the definition
In the same manner as before, it is immediate that
PG;_.;=0, and K)G;_;=-I. (55)

Now, noting that QG;=0 for all i</, equations
(20) and (55) yield, by induction,

PG;=0 forall i<j. (56)
It folows immediately from (55) and (56) that
K;G;=0 forall i<j-1.
If we define a set of vectors K by
K- =K, +FK; (57)
(i.e. the K; are computed backwards from X)), then
simple induction using (56) and (57) gives the

indentities

KiG;_,=—1

and g 0, k>1

}for all i<j. (58)

We are now in a position to compute #* from
u;*, Recalling that u;_,* =1 *, we obtain

P ’ s
Uj*=Kpx;+K;x;
which readily reduces to
* __ ’
uj *=Ki_1x;-,

by use of the above equations and the transforma-
tion x;=x;_,—G;_u;. Successive use of this
procedure gives u*=K;x; for all i<j, and in
particular

w*=K'x. 21)
The optimal performance index

% _. 12 -
V*=x;/Px;

=(xj—1—Gj—1“j)'P(xj—1“‘Gj—xuj)
or, since PG;_; =0,
V*=x;_Px;_,

and by (56) this reduction can be continued, so that
finally

V*=x'Px. (22)

From the basic transformation x;=x;_; — G;_ ¥,
we can prove as before that Kix;_,...0 for all i in
the range 1 <i<j. From this identity and equation
(58), it follows by induction that

K/x=0, i=1,...,]. (23)

This completes the derivation.

Résumé—Le présent article considére une nouvelle approche
a4 Poptimalisation du systéme linéaire, eventuellement
variable dans le temps,

x=Fx+Gu [|u]<1

par rapport 4 I'indice de performance

1y
V=j x'Qxdt.
to

La nouvelle approche applique la théorie des régulateurs
habituelle, en utilisant des transformations appropriées,
et permet ainsi une solution plus compléte du probléme que
n’a été possible jusqu’ici. Par exemple, Iarticle considére
les cas qui ont lieu lorsque Q est singulier.

Une attention particuliére est reservée au cas-limite
lorsque ¢; devient infini. Pour ce cas, Iarticle présente des
conditions pour la stabilité asymptotique des trajectoires
optimales singuliéres.

L’article considére également certains résultats se rap-
portant aux solutions par plus, moins ou zéro.
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Zusammenfassung—Betrachtet wird ein neuer Zugang zur
Optimierung des linearen, moglicherweise zeitvariablen
Systems

x=Fx+Gu |ul<1

hinsichtlich des Index der Arbeitsweise

1
v=| x'0xdr.

to

Der neue Zugang verwendet die ibliche Reglertheorie
unter Benutzung geeigneter Transformationen und erlaubt
deshalb eine vollstindigere Losung des Problems, als es
bisher moglich war. Als Beispiel werden die sich ergebenden
Fille betrachtet, wenn Q singulir ist.

Spezielle Aufmerksamkeit wird dem Grenzfall geschenkt,
wenn £, unendlich wird. Fiir diesen Fall werden Bedingunge
fiir die asymptotische Stabilitdt der singuldren optimalen
Trajektorien angegeben.

Einige Stabilititsergebnisse, die “bang-bang” Losungen
hetreffend, werden betrachtet.

Pe3iomMe—Hacrosias cTarbsi paccMaTpUBaer HOBbIK 10~
X0 K ONTHMU3ALMA JIHHERHOH., BOIMOXKHO TMEPEMENHOH
N0 BPEeMEHH,, CHCTEMbI

v=Fx+Gu lu}< 1

110 OTHOILUEHMKO K noKa3areiao pa6o bl

1y
1% =:" x'Qxdi .
R fiy

Hosbit moaxon npuMeHser 00bMHYIO TEOPUIO PErysTo-
POB, HCNOMB3YS MOAXONSLIME NpPEeBPALICHUS, W NO3BONAET
TakuM oOpasom Oonee TonHOE pelleHue npobieMbt yem
3T0 ObUIO BO3MOXHO A0 CcHX mop. Hanmpumep, cratbs
paccMaTpHBaeT clydad KOTOpbie HMEIOT MECTO KOrja
(Q CTAaHOBHTCA HEOOBIYHBIM .,

Ocoboe BHHMaHHE yIAeNeHO npeaenbHOMY Ciyyalo
KOTJa f) CTAHOBHUTCH OeckoHeuMbIM. JIis 3Toro ciyyas,
CTaThs MpeNIaraer YCIOBHS aCUMOTOTHMECKOH YCTOMYMB-
OCTH [UIsi HeOOBIYHBIX ONTHMAbHBIX TPAEKTOPHHA.

CraThsl TaKXe PAacCMATPHMBAET HEKOTOPHIE PE3YNbTATHL
OTHOCHLMECA K TPEXTO3ULHOHHBIM PELICHUAM THIA * ‘TUTIOC,
MHHYC, HOJIB™ .



